资料来源:鲜枣课堂
作者:小枣君
(资料图片)
物联网智库 转载
导读
R15:奠定基础,揭开面纱
首先,我们先看看R15的创新思路。
R15是5G标准制定的开端。正所谓:“好的开始,是成功的一半”。为了迈出坚实的第一步,通信行业专家们进行了充分的研究和准备工作。
当时,R15最重要的使命,是针对eMBB(增强移动宽带)场景进行标准制定。而这个场景,需要的正是通信网络最重要的一个指标——速率。
ITU针对eMBB的指标要求,是下行峰值速率必须达到10Gbps以上,用户体验速率必须达到1Gbps以上。3GPP为了实现这一需求,采用了两个思路:一个是寻找更多的可用频谱资源,另一个是深入挖掘每MHz频率资源的潜力。
在扩充频谱资源方面,3GPP在Sub-6GHz频段的基础上,提出了 移动毫米波技术 。也就是说,将5G的工作频谱向更高频段延伸,覆盖到毫米波的频段。
移动毫米波带来的速率和容量提升非常明显,奠定了5G高速连接的基础。
在毫米波技术的基础上,3GPP又引入了 Massive MIMO (大规模天线阵列)。
这个技术是5G最具标志性的创新之一,可以说是“神来之笔”。它通过大量增加基站中的天线数量,从而对不同的用户形成独立的窄波束覆盖,从而数十倍地提升了系统吞吐量,也改进了基站的覆盖效果(尤其弥补了毫米波覆盖能力的不足)。
Massive MIMO
在深入挖掘频谱资源潜力方面,技术挑战就更大了。这里面涉及到了大量的底层技术创新,包括多址技术、调制技术、编码技术、物理层结构等,都需要重新进行设计。
5G NR设计中最重要的决定之一,就是选择无线波形和多址接入技术。
在当时的方案评估过程中,高通通过广泛研究发现, 正交频分复用(OFDM) 体系,具体来说包括循环前缀正交频分复用(CP-OFDM)和离散傅里叶变换扩频正交频分复用(DFT-S OFDM),是面向5G eMBB和更多其他场景的最佳选择(后来证明确实如此)。
在4G LTE已有的OFDM应用基础上,高通高级工程总监 季庭方 通过设计了统一的子载波间隔指数扩展公式,实现了可扩展的OFDM参数配置。这一技术发明,被称为“ 可扩展参数集 ”,是R15的重大亮点。
利用可扩展OFDM参数配置,可以实现子载波间隔能随信道宽度以2的n次方扩展。这样一来,在更大带宽的系统中,FFT点数大小也随之扩展,却不会增加处理的复杂性。
R15另一个令人耳目一新的设计是基于时隙的灵活框架。该灵活框架的关键技术发明就是 5G NR自包含时隙结构 。在新的自包含时隙结构中,每个5G NR传输都是模块化处理,具备独立解码的能力,避免了跨时隙的静态时序关系。
2018年6月,3GPP R15标准正式冻结。现在看来,R15成功打响了5G的第一枪。它带来的诸多创新,给人们揭开了5G的神秘面纱,也为5G后续的迭代演进奠定了坚实的基础。
R16:场景扩展,赋能行业
R15主要针对eMBB(增强移动宽带)场景进行了标准制定。R16在R15的基础上,进一步完善了uRLLC和mMTC场景的标准规范,从而贡献了第一个5G完整标准,也是第一个5G演进标准。
从本质上来说,实现对 垂直行业 的支持和赋能,是R16最重要的使命。
R16需要进行标准化的uRLLC(超可靠低延迟通信)场景,主要针对的就是工业互联网、车联网等垂直行业领域。ITU针对uRLLC场景提出的指标目标,包括更严格的可靠性要求(高达99.9999%的可靠性),以及毫秒级的时延。
R16需要通过进一步增强5G网络的基础能力,引入更多的网络新特性,以此更好地支持toB的关键业务型用例,满足智能制造、智能质检、无人驾驶等垂直行业需求。
在网络基础能力增强方面,R16对频谱效率、网络的利用率和鲁棒性等方面都做了专门的优化和增强,包括 大规模天线增强、载波聚合增强、切换技术增强 等,极大地提升了5G的可用性和完善性。
在新特性引入方面,R16的表现 更是 可圈可点。
以频谱扩展为例,R16增加了对 5G NR免许可频谱 (NR-U) 的支持,包括两种模式:许可辅助接入(LAA),以及不需要任何许可频谱的独立部署。这不仅带来了更大的容量,也实现了更灵活的部署。
对于前面提到的可靠性和时延要求,高通主导的 多点协作通信 (CoMP) ,是实现这一目标的关键赋能技术之一。在这个技术创新中,通过采用多个发射和接收点(多TRP),创建有冗余通信路径的空间分集,实现高可靠性和低时延,构建可用的时间敏感网络(TSN)。
车联网(V2X)是5G的一个重要垂直应用领域。在这个领域中,高通等公司主推的 直连通信(D2D) 是一个重要的技术创新,能够实现V2X支持车辆编队、半自动驾驶、外延传感器、远程驾驶等更丰富的车联网应用场景。
车联网(V2X)
R16在组网技术方面则引入了远端干扰管理、无线中继以及网络组织和自优化技术,使得网络实际用户体验获得提升。
具有代表性的例子,是 新型干扰测量与抑制技术(比如RIM/CLI) ,以及 集成接入与回传(IAB) 。
集成接入与回传(IAB)支持毫米波基站进行无线接入和回传,在部署密集网络时可有效减少新增光纤部署需求。
特别值得一提的是,为了更好地推动政企垂直行业的5G落地,R16在专网部署模式上也进行了创新,推出了对 非公共网络(NPN) 的支持,为5G专网通信的发展指明了方向。
R16引入的新特性很多,除了上述技术之外,还包括终端节能,终端移动性增强、高精度定位等。
2020年7月,R16标准正式冻结。
如果说R15只是实现了一个“可用”的5G,那么, R16的作用,就是让“可用”的5G变成“好用”的5G 。它在成本、效率和功能上进行了深入增强和改进,为5G的全面落地铺平了道路。
R17:能力升级,应用探索
终于到了R17!
如果用一个词来形容R17的定位,那就是“ 承前启后 ”。
作为全球5G NR标准的第三个主要版本,R17进一步从网络覆盖、移动性、功耗和可靠性等方面扩展了5G技术基础,将5G拓宽至全新用例、部署方式和网络拓扑结构。
R17演进的关键词,可以分为“增强”和“扩展”。
R17是在5G规模商用之后制定的标准。所以,它可以根据5G前期实际部署的经验,以及发现的不足,进行“查漏补缺”。
R17为5G系统的容量、覆盖、时延、能效和移动性等多项基础能力带来了更多增强特性,包括Massive MIMO增强、覆盖增强、终端节电、频谱扩展、IAB增强、uRLLC增强等。
我们还是从频谱开始说起。
R17对5G毫米波进行了频谱扩展,定义了一个被称为FR2-2的全新独特频率范围,将毫米波的频谱上限,推高到了71 GHz。
这意味着,5G毫米波的网络容量将变得更大,更多的用例和部署方式将得以实现。例如智能制造行业中支持通信和定位功能的毫米波企业专网。
得益于5G NR可扩展子载波间隔(SCS)方案和基于时隙的灵活帧结构,这种频段扩展可将控制和数据信道的子载波间隔直接扩展到480 kHz和960 kHz(以前低频段毫米波为120 kHz)。
除频段扩展之外,R17还带来了其它 毫米波增强 特性,包括支持带间上行/下行载波聚合和增强移动性。
IAB(集成接入与回传)增强,来自于同时发射/接收(即全双工)和增强的多跳操作等特性,可以进一步提升部署效率、覆盖和性能。这对于毫米波部署尤其有用,它能够更经济且高效地快速扩展覆盖范围。
终端能力增强 方面,为了改善用户体验,R17提出了一系列的增强特性。
例如支持多达八根天线和额外的空间流,可实现更高吞吐量;先进的MIMO增强功能,可提升容量、吞吐量和电池续航;面向连接态和空闲态模式的节能新特性,可延长电池续航;重传和更高传输功率,可改善终端的网络覆盖范围;5G定位技术增强,可改善定位精度和时延;双卡双待,可支持单个或两个运营商的两个订购服务并发;等等。
R17作为5G第一阶段和第二阶段的过渡,既要对现有5G进行增强,也要探索更多的5G场景应用可能性。这些可能性,包括RedCap、非地面网络(NTN)、扩展直连通信、厘米级定位、扩展广播/多播,以及无界XR(扩展现实)。
5G R17引入的最具代表性的技术,当然是面向中低速物联网应用的 RedCap ,也就是 NR-Light 。
RedCap是简化版的5G,通过降低协议的复杂度,采用更好的节能技术,可以满足可穿戴设备、工业传感器和监控摄像头等物联网需求。
另一个值得关注的R17新特性,是 非地面网络(NTN) 。
近年来,人们对卫星通信的关注度不断增加。为了让5G提供无处不在的连接,3GPP也加强了非陆地区域网络覆盖的研究。在R17中,有两个并行的NTN工作组来应对移动宽带和低复杂度物联网(IoT)用例。
第一个项目采用5G NR框架来进行卫星通信,实现从地面到卫星的固定无线接入(FWA)回传,并为智能手机直接提供低速率数据服务和语音服务。第二个项目侧重支持低复杂度eMTC和NB-IoT终端卫星接入,扩大了关键用例的网络覆盖范围,如全球资产追踪。
最后一个我要提到的R17新方向,是 无界XR 。
去年爆火的元宇宙,给我们展现了跨越实体世界和虚拟世界的个性化数字体验。作为元宇宙的底层支撑技术,以VR、AR为代表的XR扩展现实技术得到了更多的重视。
R17中的XR项目,专注于研究和界定各种类型的XR流量(AR、VR、云游戏)。此项研究为已经确定的XR流量类型定义需求和评估方法,并支持性能评估以确定未来的提升范畴。
结语
10月10日 线上直播
物联网智赋风电产业数字化升级
扫码即可预约观看