SparK项目原作解读:卷积模型的首个BERT预训练

「大规模预训练」是 AI 各领域愈发浮出水面的宏图愿景。BERT 预训练与 GPT 齐名,分别被证明在语言理解和语言生成下游任务上取得了卓越性能,是 NLP 表征学习的利器。「卷积模型」则是视觉领域的中流砥柱。得益于高度并行化和局部化,CNN 长期积累的硬件优化使其成为现实工业界中不可代替的骨干。「强大的预训练的卷积模型」则是视觉研究者的长期追求,然而,卷积模型的 SOTA 预训练仍停滞在对比学习,将 BERT 的成功从 Transformer 迁移到卷积是一个吸引人但未实现的愿景。

SparK 工作初步进行了一些探索:该工作归纳 BERT 算法和 CNN 模型的关键不适配在于两点:(1) 是规整的 CNN 天生无法处理随机的、不规则的 BERT 随机掩码的输入,(2) 是视觉领域中长期以来的 “多尺度” 设计,与天然单尺度的 BERT 存在不一致。其解决方案是:(1) 使用子流形稀疏卷积以适应随机孔洞输入,(2) 设计 UNet 风格结构以允许多尺度信息的流通。


【资料图】

作为卷积模型上的首个 BERT 式预训练,SparK 可被使用在任何模型上,并以 ResNet 系列和 ConvNeXt 为例测试,性能远超有监督预训练、对比学习,甚至超过 MIM+Swin-Transformer. 目前代码、模型均开源,作者希望能够为真实场景下的卷积模型助力,并帮助探索更广阔的视觉预训练领域。

机器之心最新一期线上分享邀请到了北京大学在读硕士田柯宇,为大家分享他们近期工作 SparK。

分享主题:SparK:卷积模型的首个BERT预训练

分享嘉宾:田柯宇,北京大学研一学生,导师为王立威老师,研究方向为深度学习算法,包括超参数优化/强化学习/自监督的新型算法,在 NeurIPS 等会议发表多篇论文并担任 NeurIPS/ICML/ICLR/CVPR 等审稿人。

分享摘要:SparK 由北大与字节跳动合作,是卷积模型上的首个通用的 BERT 式预训练,可被运用在任何卷积网络上(如 ResNet-50/ConvNeXt)。在分类 / 检测 / 分割的标准下游场景,SparK 大幅超过了有监督预训练和对比学习(最高涨幅达 3.5),超越 MIM+Swin-Transformer,并展现出可扩放性质(scalable):大模型收益更多。希望 SparK 的开源,以及其利用稀疏卷积和多尺度结构的两个关键设计,可以助力使用卷积网络的各个真实场景、贡献社区。

相关链接:

1)SOTA!模型平台项目主页链接:

https://sota.jiqizhixin.com/project/spark

2)论文链接:

https://arxiv.org/abs/2301.03580

3)代码仓库:

https://github.com/keyu-tian/SparK

4)Demo视频:

http://www.youtube.com/watch?v=-IWyQ2hAoBw

加群看直播
直播间: 关注机器之心机动组视频号,北京时间 2 月 27 日 19:00 开播。
交流群:本次直播设有 QA 环节,欢迎加入本次直播交流群探讨交流。
如群已超出人数限制,请添加机器之心小助手:syncedai2、syncedai3、syncedai4 或 syncedai5,备注「SparK」即可加入。
如果你也有最新工作希望分享或提交你感兴趣的内容方向,随时告诉我们吧: https://jiqizhixin.mikecrm.com/fFruVd3
机器之心 · 机动组
机动组是机器之心发起的人工智能技术社区,聚焦于学术研究与技术实践主题内容,为社区用户带来技术线上公开课、学术分享、技术实践、走近顶尖实验室等系列内容。 机动组也将不定期举办线下学术交流会与组织人才服务、产业技术对接等活动,欢迎所有 AI 领域技术从业者加入。

关键词: 机器之心 人工智能技术

推荐DIY文章
主机存在磨损或划痕风险 PICO4便携包宣布召回
穿越湖海!特斯拉Cybertruck电动皮卡可以当“船”用
vivoXFold+折叠旗舰开售 配备蔡司全焦段旗舰四摄
飞凡R7正式上市 全系标配换电架构
中兴Axon30S开售 拥有黑色蓝色两款配色
荣耀MagicBookV14 2022正式开售 搭载TOF传感器
it