现有的区域能源站规划未考虑负荷时空特性,且能源站的选址、设备选型定容、网络布局和管道选径等与区域冷热电联供系统的经济性直接相关。为此,上海交通大学电子信息与电气工程学院的研究人员姚志力、王志新,在2021年第22期《电工技术学报》上撰文,提出考虑负荷特性的区域冷热电联供系统站网协同优化设计方法。
经济高速发展推动着能源利用规模不断扩大,能源危机问题愈发严重。优化能源结构已成为当今各国解决能源供需平衡的重要战略举措之一。冷热电联供系统(Combined Cooling, Heating and Power, CCHP)能够实现多能供应,并提高能量利用效率,是能源系统发展的重要方向。建设冷热电联供系统对于推动能源结构转型具有重要意义。
冷热电联供系统主要包括供能站点、配送网及冷热电负荷。集中供能站通过能源产生、转换和存储为用户供给能量,需根据负荷水平进行容量优化配置;配送网络通过输送管道连接供能站与冷热负荷,具有复杂的拓扑结构及参数选择。由于冷热电联供系统站网规划受能源站站址、供能范围、管道布局和负荷水平及其分布等多因素影响,因此,冷热电联供系统站网规划需综合考虑各因素的影响,最大程度地节约投资成本,提高区域系统经济性。
目前,国内外对冷热电联供系统的站网配置布局进行了相关研究,大致分为两类:①给定供能站点,优化站点供能区域内的设备选型定容或管网布局;②同时优化待规划区域内供能站点及其供能范围和各站点选型定容或管网布局。
然而,相关文献均是对单个冷热电联供系统进行的设备配置优化或管网规划优化,未涉及区域内冷热电联供系统站网的整体规划。有学者提出了“智慧综合能源系统”构想,虽然构建计及交通流量的多综合能源站点选址和选型定容优化模型,但未考虑区域内管网布局优化。
有学者研究对象为区域内多个冷热电联供系统,但其仅研究区域内考虑负荷特性的管网最优布局规划,未涉及区域内站点选型定容配置优化问题。有学者虽对供能系统进行站网联合规划,但其仅研究如何实现供能站点间的互联协同与互补互济。由于供能站点及其配置与管道布局密切相关,因此在区域内冷热电联供系统规划中需考虑站网协同优化问题。
针对上述问题,上海交通大学电子信息与电气工程学院的研究人员提出了一种考虑负荷特性的区域冷热电联供系统站网协同优化设计方法,充分考虑区域内负荷的时空特性,对区域内站点数量、选址、设备选型定容、供能网络布局和管道选径进行交替协同规划。
图1 冷热电联供系统结构
首先,根据供能站供能半径确定新建站点数量,基于区域内负荷的空间分布特征,采用改进p-中位优化模型建立了区域内冷热电联供站点选址和供能范围划分模型;其次,基于区域内负荷的时序互补特性,考虑多能流耦合和网络协调,提出基于Prim算法的管道建设最小树网络布局优化方法,结合供能范围内的负荷特性进行管径优化;再次,在确定的供能站网方案下,基于冷热电联供站、网规划间的相互作用,以区域站网年化总成本最低为目标对冷热电联供站点的设备选型定容和管网布局选径进行交替协同优化,采用GA求解各供能站点设备选型问题。对待规划区域进行算例分析。
仿真结果表明,考虑负荷特性的区域冷热电联供系统站网协同优化模型能够实现负荷在时空尺度上的峰谷转移,改善负荷分配不均现象,优化系统整体经济性,提高设备和管网的利用率。
研究人员得到结论如下:
1)考虑负荷空间分布特征的改进p-中位优化模型能够实现冷热电联供站点最优选址;考虑负荷时序互补和网络多能流耦合协调的Prim算法能够优化网络布局和管径选择,从而协调区域内各类负荷的时空峰谷错峰情况,提升综合能源站设备和管网的利用效率。
2)采用区域冷热电联供系统站网协同双层交替优化设计,规划方案较其他方案在管网建设成本方面有所增加,但区域冷热电联供系统整体经济性得以明显提升,提高了区域内设备集中度、供能设备和粗径管道的利用率等。
3)采用考虑负荷特性的区域冷热电联供系统站网协同优化设计方法,解决了传统方法因未考虑各类负荷的时空特性,造成站网设备投资规模偏大、系统经济性不高等问题。
4)进一步研究计及风光等可再生能源对区域内综合能源系统站网协同规划的影响及改进方法,有利于提高能源综合利用效率、促进可再生能源的就地消纳等。
本文编自2021年第22期《电工技术学报》,论文标题为“考虑负荷特性的区域冷热电联供系统站网协同优化设计方法”,作者为姚志力、王志新。